Genome Wide In silico Analysis of the Mismatch Repair Components of Plasmodium falciparum and Their Comparison with Human Host
نویسندگان
چکیده
Malaria a major parasitic infection globally particularly in tropical and sub-tropical regions of the world is responsible for about 198 million cases and estimated deaths due to this disease are about 0.6 million. The emergence of drug resistance in the malaria parasite is alarming and it is necessary to understand its underlying cause and molecular mechanisms. It has been established that drug resistant malaria parasites have defective mismatch repair (MMR) therefore it is essential to study this pathway and its components in detail. Recently a number of non-synonymous Single Nucleotide Polymorphisms have been reported in genes involved in MMR pathways. PfMLH is an endonuclease essential to restore the MMR in drug resistant strains of Plasmodium falciparum. Considering all these facts about the role of MMR in emergence of drug resistant parasite, in this manuscript we report a genome wide analysis of the components of the MMR pathway such as MLH, Pms1, MSH2-1, MSH2-2, MSH6, and UvrD using in silico bioinformatics based approaches. The phylogenetic analysis revealed evolutionary closeness with the MMR components of various organisms. It is noteworthy that P. falciparum contains two homologs of MSH2, which are located on different chromosomes. The structural modeling of these components showed their similarity with the human/yeast MMR components. The docking studies reveal that PfUvrD and PfMLH interact with each other. The in silico identification of interacting partners of the major MMR components identified numerous P. falciparum specific proteins. In line with our previous studies the present study will also contribute significantly to understand the MMR pathway of malaria parasite.
منابع مشابه
The Use of Crude Plasmodium falciparum Antigens for Comparison of Antibody Responses in Patients with Mild Malaria vs. Cerebral Malaria
Background: Cerebral malaria (CM) is one of the major causes of death in African populations infected with Plasmodium falciparum. Only 1% of infected subjects develop CM. The reasons for these differences are not fully understood, but it is likely that the host humoral response against blood-stage antigens plays a role in protection from malaria, although the precise targets and mechanisms medi...
متن کاملDNA damage regulation and its role in drug-related phenotypes in the malaria parasites.
DNA of malaria parasites, Plasmodium falciparum, is subjected to extraordinary high levels of genotoxic insults during its complex life cycle within both the mosquito and human host. Accordingly, most of the components of DNA repair machinery are conserved in the parasite genome. Here, we investigated the genome-wide responses of P. falciparum to DNA damaging agents and provided transcriptional...
متن کاملGenome-Wide Collation of the Plasmodium falciparum WDR Protein Superfamily Reveals Malarial Parasite-Specific Features
Despite a significant drop in malaria deaths during the past decade, malaria continues to be one of the biggest health problems around the globe. WD40 repeats (WDRs) containing proteins comprise one of the largest and functionally diverse protein superfamily in eukaryotes, acting as scaffolds for assembling large protein complexes. In the present study, we report an extensive in silico analysis...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملComparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum.
The life cycle of the parasite Plasmodium falciparum, responsible for the most deadly form of human malaria, requires specialized protein expression for survival in the mammalian host and insect vector. To identify components of processes controlling gene expression during its life cycle, the malarial genome--along with seven crown eukaryote group genomes--was queried with a reference set of tr...
متن کامل